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Abstract. The objective of this study was to simulate the groundwater flow movement using 

a chaotic dynamical approach. The relationship between the actual flow velocity and the 

mean velocity was described using a random cascade model with branching number of 2. 

Results showed that the heterogeneous groundwater flow movement meets the criteria of a 

nonlinear dynamic system. The use of nonlinear dynamic method improved the accuracy of 

predicting groundwater flow process using convectional volume averaged Darcy’s law. 

1 Introduction 

Although the possibility of chaos is expected to occur in partially saturated, heterogeneous 

structure soil and fractured rock with discontinuity effects and drastic differences in permeability and 

flow mechanisms, analysis of groundwater flow in heterogeneous aquifer demonstrated the absence of 

chaos for groundwater flow as related to the impossibility of closed flow paths [1-4]. A common 

equation used to describe groundwater flow is the cubic law. However, a combination of many 

nonlinear factors and processes in the heterogeneous media leads to the departure from the cubic law 

even for flow through a single path. The groundwater flow process can be treated as a dynamic system 

[5, 6]. A dynamic system was defined as a physical system with a variation of system parameters.  

Dynamic system is classified into two types, the deterministic system and the stochastic system [7]. 

The deterministic systems are driven by a forcing function described explicitly to simulate the 

evolution of the system. While the stochastic system is driven by the random force described using 

probabilistic functions [8].  In this study, the heterogeneous groundwater flow was described using a 
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chaotic method in which groundwater system was nonlinearly, and coupled effects of several nonlinear 

processes were governed by nonlinear partial differential equations. 

2 Material and Methods 

The variable hydraulic head field is evaluated numerically by solving the following steady state 

two-dimension groundwater equation for a heterogeneous confine aquifer. 
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The average velocity of Lagrangean particles is governed by the Darcy equation: 
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A function f is used to describe possible actual velocity distributions due to soil heterogeneity.   
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Integrating Eq. (3) yields: 
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Substituting Eq. (2b) into Eq. (4) yields 
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Eq. (5) yields: 
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Fig.1 shows the possible relationship between the actual velocity and the mean velocity in the z 

direction. Fig.2 shows the process of construction of a discrete cascade. The mean velocity is 

successively divided into b equal parts at each step. At the first level, the mean velocity is subdivided 

into b=2 subs, then, at the second level each of the above subs is further subdivided into b=2 subs.  
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